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The Geographic Profiling Problem

The geographic profiling problem is to estimate the location of the
home base of a serial criminal from the known locations of the
elements of the offender’s crimes.

The home base is also called the anchor point of the offender. It may
be the offenders home, the home of a relative, a place of work, or even
a favorite bar.

This is an operational problem.

We have developed a new tool for the geographic profiling problem.
It is free for download and use, and is entirely open source.

http://pages.towson.edu/moleary/Profiler.html

It is still in the prototype stage and is being evaluated by different police
agencies across the country.
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Example- Convenience Store Robberies

Date Time
Location

Target
Latitude Longitude

March 8 12:30 pm -76.71350 39.29850 Speedy Mart
March 19 4:30 pm -76.74986 39.31342 Exxon
March 21 4:00 pm -76.76204 39.34100 Exxon
March 27 2:30 pm -76.71350 39.29850 Speedy Mart
April 15 4:00 pm -76.73719 39.31742 Citgo
April 28 5:00 pm -76.71350 39.29850 Speedy Mart
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Developing a Model

To understand how we might proceed let us begin by adopting some
common notation

A point x will have two components x = (x(1), x(2)).
These can be latitude and longitude
These can be the distances from a pair of reference axes

The series consists of n crimes at the locations x1, x2, . . . , xn
The offender’s anchor point will be denoted by z.

Distance between the points x and y will be d(x, y).
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How should we measure distances?

The Euclidean distance d2(x, y) =
√
(x(1) − y(1))2 + (x(2) − y(2))2

The Manhattan distance d1(x, y) = |x(1) − y(1)|+ |x(2) − y(2)|

The spherical distance

ds((λ1,φ1), (λ2,φ2))

= 2R arcsin
√

sin2 (1
2∆λ

)
+ cos λ1 cos λ2 sin2 (1

2∆φ
)

Here φ is longitude and λ is latitude.

The highway distance?

The street distance?
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A Mathematical Model

Suppose that we know nothing about the offender, only that the
offender chooses to offend at the location x with probability density
P(x).

The probability density does not mean that the offender chooses
randomly (though he may), rather we are modeling our lack of
complete information about the offender.
Probabilistic models are common in modeling deterministic
phenomena, including

The stock market
Population dynamics
Genetics
Epidemiology
Heat flow
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A Mathematical Model

On what variables should the probability density P(x) depend?
The anchor point z of the offender

Each offender needs to have a unique anchor point
The anchor point must have a well-defined meaning- e.g. the offender’s
place of residence
The anchor point needs to be stable during the crime series

The average distance α the offender is willing to travel from their
anchor point

Different offender’s have different levels of mobility- an offender will need
to travel farther to commit some types of crimes (e.g. liquor store
robberies, bank robberies) than others (e.g. residential burglaries)
This varies between offenders
This varies between crime types

Other variables can be included

We are left with the assumption that an offender with anchor point z
and mean offense distance α commits an offense at the location x
with probability density P(x | z,α)
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A Mathematical Model

Our mathematical problem then becomes the following:
Given a sample x1, x2, . . . , xn (the crime sites) from a probability
distribution P(x | z,α), estimate the parameter z (the anchor point).

This is a well-studied mathematical problem
One approach is the theory of maximum likelihood.

Construct the likelihood function

L(y,a) =
n∏

i=1

P(xi | y,a) = P(x1 | y,a) · · ·P(xn | y,a)

Then the best choice of z is the choice of y that makes the likelihood as
large as possible.
This is equivalent to maximizing the log-likelihood

λ(y,a) =
n∑

i=1

lnP(xi | y,a) = lnP(x1 | y,a) + · · ·+ lnP(xn | y,a)

Mike O’Leary (Towson University) Applying mathematics to catch criminals February 5, 2015 15 / 71



Bayesian Analysis

Suppose that there is only one crime site x. Then Bayes’ Theorem
implies that

P(z,α | x) =
P(x | z,α)π(z,α)

P(x)

P(z,α | x) is the posterior distribution
It gives the probability density that the offender has anchor point z and
the average offense distance α, given that the offender has committed a
crime at x

π(z,α) is the prior distribution.
It represents our knowledge of the probability density for the anchor point
z and the average offense distance α before we incorporate information
about the crime
If we assume that the choice of anchor point is independent of the
average offense distance, we can write

π(z,α) = H(z)π(α)

where H(z) is the prior distribution of anchor points, and π(α) is the prior
distribution of average offense distances

P(x) is the marginal distribution
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Bayesian Analysis

A similar analysis holds when there is a series of n crimes; in this
case

P(z,α | x1, . . . , xn) =
P(x1, . . . , xn | z,α)π(z,α)

P(x1, . . . , xn)
.

If we assume that the offender’s choice of crime sites are mutually
independent, then

P(x1, . . . , xn | z,α) = P(x1 | z,α) · · ·P(xn | z,α)

giving us the relationship

P(z,α | x1, . . . , xn) ∝ P(x1 | z,α) · · ·P(xn | z,α)H(z)π(α).

Because we are only interested in the location of the anchor point, we
take the conditional distribution with respect to α to obtain the
following

Mike O’Leary (Towson University) Applying mathematics to catch criminals February 5, 2015 17 / 71



Fundamental Theorem of Geographic Profiling
Suppose that an unknown offender has committed crimes at
x1, x2, . . . , xn, and that

The offender has a unique stable anchor point z

The offender chooses targets to offend according to the probability
density P(x | z,α) where α is the average distance the offender is
willing to travel

The target locations in the series are chosen independently

The prior distribution of anchor points is H(z), the prior distribution of
the average offense distance is π(α) and these are independent of
one another.

Then the probability density that the offender has anchor point at the
location z satisfies

P(z | x1, . . . , xn) ∝
∫∞

0
P(x1 | z,α) · · ·P(xn | z,α)H(z)π(α) dα
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Remarks

1 The framework is independent of the significance of the anchor point z
2 This framework holds for any model of offender behavior P(x | z,α)
3 This framework holds for any choice of prior distributions H(z) and
π(α)

4 The framework is independent of the choice of distance metric
5 Geographic features that affect crime selection can be incorporated

into the form of P(x | z,α)
6 Geographic features that affect the selection of anchor points are

incorporated into the form of H(z)
7 The framework provides a prioritized search area; the framework

estimates P(z | x1, . . . , xn) which is the probability density for the
offender’s anchor point; by definition locations where P(z | x1, . . . , xn)
are larger are more likely to contain the anchor point than regions
where it is smaller.
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Using the Fundamental Theorem

For the mathematics to be useful, we need to be able to:
Make some reasonable choice for our model for offender behavior
Make some reasonable choice for the prior distribution of anchor points
Make some reasonable choice for the prior distribution of the average
offense distance, and
Be able to evaluate the mathematical terms that appear
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Models of Offender Behavior

Suppose that we assume that offenders choose offense sites
according to a normal distribution, so that

P(x | z,α) =
1

4α2 exp
(
−
π

4α2 |x− z|2
)

.

If we also assume that all offenders have the same average offense
distance α, and that all anchor points are equally likely, then

P(z | x1, . . . , xn) =
(

1
4α2

)n

exp

(
−
π

4α2

n∑
i=1

|xi − z|2

)
.

The mode of this distribution- the
point most likely to be the offender’s
anchor point- is the mean center of
the crime site locations.
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Models of Offender Behavior

Suppose that we assume that offenders choose offense sites
according to a negative exponential distribution, so that

P(x | z,α) =
2
πα2 exp

(
−

2
α
|x− z|

)
.

If we also assume that all offenders have the same average offense
distance α, and that all anchor points are equally likely, then

P(z | x1, . . . , xn) =
(

2
πα2

)n

exp

(
−

2
α

n∑
i=1

|xi − z|

)

The mode of this distribution- the
point most likely to be the offender’s
anchor point- is the center of minimum
distance of the crime site locations.
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Determining a Model for Offender Behavior

How can we determine a good model for offender behavior?

We must look at criminology and at data!
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Circle Theory

Canter’s Circle hypotheses1: Given a series of crimes, construct the
circle whose diameter is the segment connecting the two crimes that
are farthest apart.

If the offender is a marauder, then their anchor point will lie in this circle.
If the offender is a commuter, then their anchor point will lie outside this
circle.

Note that all of the crimes are not necessarily within the circle.

For crimes like rape and arson, there is evidence that most offenders
are marauders; for crimes like residential burglary the evidence
shows a mixture of marauders and commuters.
This is a binary approach- either someone is a commuter or they are
a marauder.

This binary approach may not be suitable in many cases.

1Canter D. & Larkin, P. (1993). The environmental range of serial rapists. Journal of Environmental Psychology, 13, 63-69.
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Which is the Commuter?

or

Here the crime locations are blue points, and the offender’s anchor
point is a red square.
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Commuters & Marauders

We have created a different way to differentiate between commuters
and marauders.
Suppose that:

The crimes are at x1, x2, . . . , xn;
The offender’s anchor point is z.

For 1 6 p <∞ define

µp = min
y


n∑

i=1

d(xi, y)p

n∑
i=1

d(xi, z)p


1/p

Note that 0 6 µp 6 1.
Offenders with small µp correspond to µp-commuters, while
offenders with large µp correspond to µp-marauders.
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Which is the Commuter?

or

µ2 = 0.58
(Canter Marauder)

µ2 = 0.56
(Canter Commuter)
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Data

We have data for residential burglaries in Baltimore County
5863 solved offenses from 1990-2008
We have 324 crime series with at least four crimes

A series is a set of crimes for which the Age, Sex, Race, DOB and home
location of the offender agree.

The average number of elements in a series is 8.1, the largest series
has 54 elements.

We have data for non-residential burglaries in Baltimore County
2643 solved offenses from 1990-2008
We have 167 crime series with at least three crimes.
The average number of elements in a series is 7.87, the largest series
has 111 elements.

We have data for bank robberies in Baltimore County
602 solved offenses from 1993-2009.
We have 70 crime series with at least three crimes.
The average number of elements in a series is 4.51, the largest series
has 15 elements.
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Commuters & Marauders

What is the distribution of µ2 commuters and marauders for
residential burglary?

There does not appear to be a sharp distinction between commuters
and marauders in this data
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Commuters & Marauders

There is little difference between µ1 and µ2 for residential burglary

µ1 µ2
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Commuters & Marauders

Non-residential burglary shows a decided preference for commuters.

µ1 µ2
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Commuters & Marauders

Bank robberies show a slight preference towards marauders.

µ1 µ2
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Distance Decay

The distance decay patterns of offenders are of fundamental
importance in the geographic profiling problem.
Though we have data for the distance from the offenders home to the
offense site for a large number of solved crimes, we cannot directly
use this information to draw inferences about the behavior of any
individual offender.

To do so is to commit the ecological fallacy.

There are two sources of variation- the variation within each
individual, and the variation between individuals.

If all of the individuals behaved in the same fashion, then the aggregate
data can be used to draw inference about the (common) underlying
behavior.
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Distance Decay

If the only quantity that varies between offenders is the average
offense distance, then the resulting scaled distances should exhibit
the same behavior regardless of the offender.

In particular, this will allow us to aggregate the data across offenders
and draw valid inference about the (assumed) universal behavior.

For each serial offender with crime sites x1, x2, . . . , xn and home z,
estimate the average offense distance α by

α̂ =
1
n

n∑
i=1

d(xi, z)

and now consider the set of scaled distances

ρi =
d(xi, z)
α̂
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Distance Decay

What do we obtain when we graph not offense distance, but scaled
distance?
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Distance Decay

When considering distance, it is important to realize that it is a
derived quantity.

Offenders do not select a distance- they select a target.

For example, if the offender selects a target from a two-dimensional
normal distribution; then the distribution of distances is a Rayleigh
distribution.
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Distance Decay

It is useful to look at the dependence of µ2 versus ρ for our residential
burglars

Commuters (µ2 ≈ 0) exhibit very different behavior than marauders
(µ2 ≈ 1).
Focus our attention only on non-commuters- say µ2 > 0.25.
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Distance Decay

If we assume that each offender chooses targets from a
two-dimensional normal distribution with their own average offense
distance, then the distribution of scaled distances should follow a
Rayleigh distribution with mean 1:
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Distance Decay

The agreement with the Rayleigh distribution does not appear to be
happenstance. Here is what occurs for non-residential burglaries with
µ2 > 0.25
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Distance Decay

Here is what occurs for bank robberies with µ2 > 0.25

Mike O’Leary (Towson University) Applying mathematics to catch criminals February 5, 2015 40 / 71



Distance Decay

It is possible that these fits are caused by something peculiar to the
geography of Baltimore County.
However, we are not the first to examine scaled distances.

Warren, Reboussin, Hazelwood, Cummings, Gibbs, and Trumbetta
(1998). Crime Scene and Distance Correlates of Serial Rape, Journal
of Quantitative Criminology 14 (1998), no. 1, 3559.
In that paper, they graphed scaled distances for serial rape:
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Distance Decay
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Distance Decay

Our Rayleigh distribution with mean 1 appears to fit this data as well:
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Distance Decay- Caveats

It is important to note that, though compelling, these graphs do not
provide justification that offenders follow a bivariate normal
distribution.

Agreement is necessary, but not sufficient for this conclusion.
There are other two dimensional distributions whose distribution of
distances also is Rayleigh.

We still do not understand the situation yet with commuters.
The Warren et. al. data is for serial rape, which is known to be well
approximated by circle theory- suggesting that this data set may be
weighted away from commuters, which our theory does not yet handle.

Though not presented, we obtained a similar degree of fit using µ1

instead of µ2 to characterize commuters and marauders.
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Angular Dependence

If our idea that the underlying distribution is bivariate normal is
correct, then there should be no angular dependence in the results.
To measure angles, let the blue dots represent crime locations, the
red square the anchor point, and the green triangle the centroid of the
crime series.
Then measure the angle between the ray from the anchor point to the
crime site and the ray from the anchor point to the centroid.
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Angular Dependence

The residential burglary data shows a striking relationship- nearly all
of the crime sites lie in the same direction as the centroid.
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Angular Dependence

We can again examine the angular variation as µ2 varies.

Even for relatively large values of µ2, the data is clustered near the
zero angle.
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Angular Dependence

The strong central peak remains, even if we restrict our attention to
series with µ2 > 0.7:

Note the dramatic changes in the vertical scale between these
images!
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Angular Dependence

Clearly there is a strong relationship between the directions the
offender took to the different crime sites.

Moreover, this relationship appears to be strong whether the offender
is a commuter or a marauder.

This suggests that weak information about direction would be more
valuable than strong information about distance if one wanted to
reduce the area necessary to search for the offender.
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Two-dimensional Distribution

Plot the histogram of the scaled two dimensional data set; here the
offender’s home is at the origin, and the centroid of the crime series is
at (x,y) = (1, 0).
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Two-dimensional Distribution

Here is another view as a two-dimensional density; note that it is not
centered at the origin.
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Alternative Hypotheses

One one hand, the distribution of distances from the offender’s home
to crime site appears to follow a Rayleigh distribution- at least for
marauders.

On the other hand, it is just as clear that the bivariate distribution is
not bivariate normal.
Indeed, it is clear that there are significant correlations between the
locations of the different crime site locations.

As evidence, we have the fact that the scaled bivariate distribution
clusters not around the offender’s home, but around the centroid of the
crime series.

Perhaps we should consider a two stage mixture model:
Offenders select a target area
Within that target area, offenders select a target.

Can we model these processes separately?
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Models of Offender Behavior

What would a more complete model for offender behavior look like?
Consider a model in the form

P(x | z,α) = D(d(x, z),α) ·G(x) ·N(z)

D models the effect of distance decay using the distance metric d(x, z)
Based on the previous work, we use a bivariate normal distribution.

G models the geographic features that influence crime site selection
High values for G(x) indicate that x is a likely target for typical offenders;
Low values for G(x) indicate that x is a less likely target

N is a normalization factor, required to ensure that P is a probability
distribution

N(z) =
[∫∫

D(d(y, z),α)G(y)dy(1)dy(2)
]−1

N is completely determined by the choices for D and G.

Mike O’Leary (Towson University) Applying mathematics to catch criminals February 5, 2015 53 / 71



Geographic Features that Influence Crime Selection

G models the geographic features that influence crime site selection,
with high values indicating the location was more likely to be targeted
by an offender.
How can we calculate G?

Use available geographic and demographic data and the correlations
between crime rates and these variables that have already been
published to construct an appropriate choice for G(x)

Different crime types have different etiologies; in particular their
relationship to the local geographic and demographic backcloth depends
strongly on the particular type of crime. This would limit the method to
only those crimes where this relationship has been well studied

Some crimes can only occur at certain, well-known locations, which are
known to law enforcement

For example, gas station robberies, ATM robberies, bank robberies,
liquor store robberies
This does not apply to all crime types- e.g. street robberies, vehicle
thefts.

We can assume that historical crime patterns are good predictors of
the likelihood that a particular location will be the site of a crime.
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Convenience Store Robberies, Baltimore County
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Geographic Features that Influence Crime Selection

Suppose that historical crimes have occurred at the locations
c1, c2, . . . , cN.
Choose a kernel density function K(y | λ)

λ is the bandwidth of the kernel density function

Calculate G(x) =
∑N

i=1 K(d(x, ci) | λ)
The bandwidth λ can be e.g. the mean nearest neighbor distance
Effectively this places a copy of the kernel density function on each
crime site and sums
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Convenience Store Robberies, Baltimore County
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Anchor Points

We have assumed
Each offender has a unique, well-defined anchor point that is stable
throughout the crime series
The function H(z) represents our prior knowledge of the distribution of
anchor points before we incorporate information about the crime series.

What are reasonable choices for the anchor point?
Residences
Places of work

Suppose that anchor points are residences- can we estimate H(z)?
Population density information is available from the U.S. Census at the
block level, sorted by age, sex, and race/ethnic group.

We can use available demographic information about the offender
Set H(z) =

∑Nblocks
i=1 = piK(z− qi |

√
Ai)

Here block i has population pi, center qi, and area Ai.
Distribution of residences of past offenders can be used.

Calculate H(z) using the same techniques used to calculate G(x)
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Population Density for Baltimore City & County
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Baltimore County Residential Burglary Offenders
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The Tool

We have developed a new tool for the geographic profiling problem.
It is free for download and use, and is entirely open source.

http://pages.towson.edu/moleary/Profiler.html

It is still in the prototype stage and is being evaluated by different police
agencies across the country.
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The Tool
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Sample Results

When the program runs, it produces an estimate for the offender’s
anchor point
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Questions?

Mike O’Leary
Department of Mathematics
Towson University
moleary@towson.edu

http://pages.towson.edu/moleary/Profiler.html

Mike O’Leary (Towson University) Applying mathematics to catch criminals February 5, 2015 64 / 71

http://pages.towson.edu/moleary/Profiler.html


Scaling

If we want to model the selection of crime sites within a hunting area,
we should not use as the length scale the distance from the offender’s
home to the crime site.
A reasonable choice for the length scale is the distance from the
individual crime sites to the centroid of the crime series.
For each serial offender with crime sites x1, x2, . . . , xn, let

c =
1
n

n∑
i=1

xi

be the centroid, select the length scale

α̂c =
1
n

n∑
i=1

d(xi, c)

and consider the set of scaled distances

ρi =
d(xi, c)
α̂c
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Site Distribution

The center of our coordinate system is on the centroid of the crime
series, angles are measured from the ray from the centroid (green
triangle) to the offender’s home base (red square).
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Site Distribution

If we plot the scaled distances from the crime site to the centroid, we
again obtain a good match with the Rayleigh distribution.

This includes all offenders- commuters and marauders.
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Site Distribution

Now if we plot the angles, we see that the uniform distribution is a
much better fit.

Clearly some anisotropy remains.
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Site Distribution

We can now directly compare the bivariate normal to the scaled
two-dimensional distribution, to see a reasonable fit.
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Site Distribution

The deviation of the scaled distribution from a bivariate normal is
more obvious when we smooth the histogram.
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Site Distribution: Conclusions

We have evidence that the distribution of crime site locations is
roughly bivariate normal, and centered around the centroid of the
crime series.

No distinction needs to be drawn between commuters and marauders.
There are noticeable deviations from normality:

Directions in line with the offender’s home address are preferred to
perpendicular directions.
There is a preference for crime sites closer to the offender’s home
address than locations farther away.
There appears to be weak evidence for the existence of a buffer zone
around the offender’s home.

These hypotheses have only been tested on residential burglaries in
Baltimore County.
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